Abstract

Three dimensional seismic-reflection data from the western Niger Delta were used to investigate the segmentation and linkage of a syn-sedimentary normal fault array and to estimate the influence of a pre-existing normal fault on the geometry and growth of younger faults. The nucleation, growth and linkage of a regional (seaward-dipping) deltaic fault system were analyzed on reflectivity time-/horizon slices and vertical seismic sections. In the deep subsurface, a master fault that consists of two segments (northwestern, NW, and southeastern, SE) grew through time into a single fault by lateral tip propagation reaching a final length of about 15 km. After attaining this length, displacement along the fault system developed non-uniformly through time. The analysis of the hanging-wall sediments of the deep-seated master fault shows two different processes of vertical linkage above the NW and SE segment. The SE segment links vertically to several younger faults contemporaneously with displacement accumulation on the master fault; in contrast, fault linkage above the NW segment occurred only after an interval of master-fault inactivity connecting the deep-seated structure upwards to a single syn-sedimentary normal fault. The observed differences in fault development suggest that although multi-segment deltaic faults form single fault systems after segment linkage, individual pre-linkage characteristics can be preserved, supporting a possibly diverse upward growth and connection to younger faults in the overburden. The geological interpretations presented highlight the influence of large deep-rooted structures on the development, location and geometry of shallow deltaic faults, documenting the influence of an older structural grain on delta tectonics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call