Abstract

AbstractThe freshwater input from rain to the surface ocean is a key component of the global water cycle. Frequent rainfall in the inter‐tropical convergence zone creates regions of strong surface stratification and low salinity, which vary seasonally. We evaluate how variations in rain type and preexisting upper ocean stratification influence the timing and duration of the salinity response to rainfall using the General Ocean Turbulence Model. A series of model simulations was run by prescribing three typical background stratification conditions and idealized rain and wind forcing that was consistent with observed convective, stratiform, and mixed convective and stratiform rainfall. Background stratification was assessed using underway CTD observations and rain forcing was identified from mooring observations collected in the eastern tropical Pacific during the second Salinity Processes in the Upper Ocean Regional Study. Model results show that strong stratification, whether preexisting or from convective rainfall, inhibits downward mixing of freshwater and allows near‐surface salinity anomalies to persist following rain. In contrast, when stratiform rain precedes convective rain, salinity anomalies are quickly mixed downward and longer lasting deeper in the mixed layer. This implies that accurately quantifying the salinity structure following rain should consider preexisting stratification and the type of rainfall. Furthermore, patterns of rainfall and stratification likely affect the bias between salinity observations at the surface and deeper in the mixed layer. Because satellite rain data do not correctly represent the small scales of rain forcing, the small‐scale surface salinity response to rain cannot be predicted from satellite data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.