Abstract

We have investigated the influence of post-perovskite (ppv) viscosity on mantle convective dynamics and stirring efficiency, using numerical modeling and simple analytical theory.Our results show that the strength of ppv has a dramatic influence on convective dynamics. The presence of a weak ppv enhances heat transfer across the bottom thermal boundary layer, resulting in higher temperatures, lower mantle viscosities and considerably larger convective velocities. This leads to a significant increase in stirring efficiencies with decreasing the ppv strength, by at least one order of magnitude.In addition, using a simple parameterized convection evolution that includes the influence of ppv, coupled to a mixing model, we show that during the long term history of the Earth's mantle, the presence of ppv yields systematically hotter thermal evolution and more efficient convective stirring.Such a strong effect of ppv strength on mantle stirring efficiency suggests that the influence of ppv phase must be considered when interpreting both geochemical and geophysical observations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.