Abstract

Diamond-like Carbon (DLC) coatings were deposited by a novel HiPIMS method that incorporates positive voltage pulses at the end of the conventional HiPIMS discharge. Different positive voltage amplitudes (100, 200, 300, 400 and 500 V) were used to evaluate the effect of this operation mode on the discharge process and the mechanical properties of the deposited DLC coatings. The application of positive pulses was observed to enhance the ionization of both the sputtered carbon and argon species. Mass spectroscopy measurements showed that a larger amount of high-energy C+ ions are generated, with ion energies proportional to the amplitude of the overshoot voltage. The ion bombardment induced by the positive pulses led to higher compressive residual stresses and densification of deposited DLC coatings. Moreover, their Raman spectra exhibited lower D-band and G-band intensity ratios (ID/IG) as the pulses voltage was increased which is indicative of higher sp3 content. Mechanical properties were evaluated by nanoindentation testing and the hardness of the deposited DLC films was observed to increase from 9.6 GPa (for no voltage pulse applied) to 22.5 GPa (for an applied positive pulse voltage of 500 V).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.