Abstract

The processes of char fragmentation, including mineral partitioning and particulate matter (PM) formation during dense and porous char combustion, were observed by a site percolation model. This model simulated the diffusion-controlled regime of char combustion, and the size distributions of included minerals in typical bituminous coal were determined by the computer-controlled scanning electron microscope (CCSEM), and the data were put into the char matrix randomly. The model presents the influence of initial pore distribution on char oxidation and fragmentation, the impact of the char conversion process on the extent of fragmentation, the change of ash distributions with the char conversion, and the particulate matters (PM) size distribution, which is derived from the consequence of the competition between char fragmentation and included minerals partitioning and coalescence. The results indicate that with increasing initial char porosity (φ), the number of large size pores increases but the number of pores decreases, which leads to open pores increasing, close pores decreasing, and the surface reaction area increasing. While φ ≥ 0.4, char fragmentation obviously occurs during the stage in which the rates of char conversion are 0.4–0.6, and it looks as though the maximum value of fragmentation will transfer to an earlier conversion stage if it has a larger φ. The enhanced φ shows a positive effect on the increase in the number and concentration of PM < 10 μm (nominally aerodynamic diameter), this is attributed to char fragments more drastically, and the probability of mineral coalescence reduces a lot.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call