Abstract

The effect of polymer architecture on the aggregation behavior of C60 fullerenes tethered with a single chain of poly(ethylene oxide) (PEO) in aqueous solution has been investigated using coarse-grained, implicit solvent molecular dynamics simulations. The PEO-grafted fullerenes were comprised of a single tether of 60 repeat units represented as a linear polymer, a three-arm star (20 repeat units/arm) or a six-arm star (10 repeat units/arm). Additionally, the influence of arm length on self-assembly of the PEO-fullerene conjugates was investigated for the three-arm stars. Self-assembly is driven by favorable fullerene-fullerene and fullerene-PEO interactions. Our simulations reveal that it should be possible to control the size and geometry of the self-assembled fullerene aggregates in water through variation of PEO architecture and PEO molecular weight. We found that aggregate size and shape could be understood qualitatively in terms of the packing parameter concept that has been employed for diblock polymer and surfactant self-assembly. Higher molecular weight PEO (longer arms) and more compact PEO (more arms for the same molecular weight) resulted in greater steric repulsion between fullerenes, engendering greater aggregate surface curvature and hence the formation of smaller, more spherically shaped aggregates. Finally, weak attractive interactions between PEO and the fullerenes were found to play an important role in determining aggregate shape, size and the dynamics of self-assembly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call