Abstract

The evolutionary effects of glacial periods are poorly understood for Southern Hemisphere marine intertidal species, particularly obligatory sessile organisms. We examined this by assessing the phylogeographic patterns of the southern African volcano barnacle, Tetraclita serrata, a dominant species on rocky intertidal shores. Restricted gene flow in some geographical areas was hypothesized based on oceanic circulation patterns and known biogeographic regions. Barnacle population genetic structure was investigated using the mitochondrial cytochrome oxidase subunit 1 (COI) region for 410 individuals sampled from 20 localities spanning the South African coast. The mtDNA data were augmented by generating nuclear internal transcribed spacer 1 (ITS1) sequences from a subset of samples. Phylogenetic and population genetic analyses of mitochondrial DNA data reveal two distinct clades with mostly sympatric distributions, whereas nuclear analyses reveal only a single lineage. Shallow, but significant structure (0.0041–0.0065, P<0.01) was detected for the mtDNA data set, with the south-west African region identified as harbouring the highest levels of genetic diversity. Gene flow analyses on the mtDNA data show that individuals sampled in south-western localities experience gene flow primarily in the direction of the Benguela Current, while south and eastern localities experience bi-directional gene flow, suggesting an influence of both the inshore currents and the offshore Agulhas Current in the larval distribution of T. serrata. The mtDNA haplotype network, Bayesian Skyline Plots, mismatch distributions and time since expansion indicate that T. serrata population numbers were not severely affected by the Last Glacial Maximum (LGM), unlike other southern African marine species. The processes resulting in the two morphologically cryptic mtDNA lineages may be the result of a recent historical allopatric event followed by secondary contact or could reflect selective pressures due to differing environmental conditions.

Highlights

  • Past climatic changes in the form of glaciations, as well as associated changes in temperature and precipitation, have been suggested as drivers of demographic change in both terrestrial and marine species

  • The present study provides a more in-depth phylogeographic consideration, based on a considerably larger data set, to elucidate the intraspecific variation of T. serrata across sampling localities along the South African coastline

  • Within-population diversity Genetic diversity indices varied across the sampling range, with striking differences between sampling areas; generally, diversities were highest on the west and south-west coasts, and they decreased towards the eastern localities

Read more

Summary

Introduction

Past climatic changes in the form of glaciations, as well as associated changes in temperature and precipitation, have been suggested as drivers of demographic change in both terrestrial and marine species. Numerous marine species have been shown to be affected by sea level fluctuations that occurred during the last 100 000 years and especially around the Last Glacial Maximum (LGM, 26 000 to 19 000 years ago) [1], [2]. The effects of sea level changes become less obvious in areas that had no ice cover during glaciation periods, such as southern Africa. The documented drop of ,130 m in sea level caused large areas of the Agulhas Bank to emerge with the formation of the southern coastal plain [2], [15], the effects on the topology of the southern African coastline are not well known. No evidence for vicariance events, such as those shown along the south-western coast of Australia as a result of the land bridge across the Bassian

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.