Abstract

Surfactant liquid-membrane type sensors are usually made of a PVC, ionophore and a plasticizer. Plasticizers soften the PVC. Due to their lipophilicity, they influence the ion exchange across the membrane, ionophore solubility, membrane resistance and, consequently, the analytical signal. We used the DMI-TPB as an ionophore, six different plasticizers [2-nitrophenyl-octyl-ether (P1), bis(2-ethylhexyl) phthalate (P2), bis(2-ethylhexyl) sebacate (P3), 2-nitrophenyl phenyl ether (P4), dibutyl phthalate (P5) and dibutyl sebacate (P6)] and a PVC to produce ionic surfactant sensors. Sensor formulation with P1 showed the best potentiometric response to four usually used cationic surfactant, with the lowest LOD, 7 × 10−7 M; and potentiometric titration curves with well-defined and sharp inflexion points. The sensor with P6 showed the lowest analytical performances. Surfactant sensor with P1 was selected for quantification of cationic surfactant in model solutions and commercial samples of disinfectants and antiseptics. It showed high accuracy and precision in all determinations, with recovery from 98.2 to 99.6, and good agreement with the results obtained with surfactant sensor used as a referent one, and a standard two-phase titration method. RDS values were lower than 0.5% for all determinations.

Highlights

  • Surface active agents or surfactants are widely used in the household and industry for washing, cleaning, disinfection and as emulsifiers

  • [18] In this paper, we investigated the influence of six different plasticizers implemented in PVC-based liquid membrane electrode with

  • The focus of the plasticizer selection should be on their size, lipophilicity and dielectric constant

Read more

Summary

Introduction

Surface active agents or surfactants are widely used in the household and industry for washing, cleaning, disinfection and as emulsifiers. There are four main groups of surfactants: anionic, cationic, amphoteric and nonionic. Cationic surfactants are used in a broad spectra of commercial products as preservatives, disinfectants and antiseptics. In the time of the recent COVID-19 pandemic, global demands for disinfectants and antiseptic products are constantly rising. In this sense, there is a need to establish simple and inexpensive quality control platforms to quantify cationic surfactants in commercial product formulations. Since classical methods for the detection of lower surfactant concentrations [1]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call