Abstract

A 3D finite element model was established to simulate the top surface temperature evolution of Ti45Al8Nb (at.%) alloy ingot under the effect of plasma arc behavior during plasma arc cold hearth melting (PAM) process. According to the model, the top surface temperature distribution and its evolution was analyzed under different heat flux densities. Simulation results show that the position of maximum top surface temperature changes with plasma arc motion, and always located in the plasma arc heating regional center, and it increases first with time elapse and then decreases in the rest of time within one cycle. The results also show that the top surface temperature is increased with the increase in heat flux densities, but the extent is not significant, and meanwhile the temperature distribution is more non-uniform and temperature gradient is greater with the increase in heat flux densities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.