Abstract

Oleaginous filamentous fungi grown under the nitrogen limitation, accumulate high amounts of lipids in the form of triacylglycerides (TAGs) with fatty acid profiles similar to plant and fish oils. In this study, we investigate the effect of six phosphorus source concentrations combined with two types of nitrogen substrate (yeast extract and ammonium sulphate), on the biomass formation, lipid production, and fatty acid profile for nine oleaginous Mucoromycota fungi. The analysis of fatty acid profiles was performed by gas chromatography with flame ionization detector (GC-FID) and the lipid yield was estimated gravimetrically. Yeast extract could be used as both nitrogen and phosphorus source, without additional inorganic phosphorus supplementation. The use of inorganic nitrogen source (ammonium sulphate) requires strain-specific optimization of phosphorus source amount to obtain optimal lipid production regarding quantity and fatty acid profiles. Lipid production was decreased in ammonium sulphate-based media when phosphorus source was limited in all strains except for Rhizopus stolonifer. High phosphorus source concentration inhibited the growth of Mortierella fungi. The biomass (22 g/L) and lipid (14 g/L) yield of Umbelopsis vinacea was the highest among all the tested strains.Key points• The strain specific P requirements of Mucoromycota depend on the nature of N source.• Yeast extract leads to consistent biomass and lipid yield and fatty acids profiles.• Umbelopsis vinacea showed the highest biomass (22 g/L) and lipid (14 g/L) yield.• High P source amounts inhibit the growth of Mortierella fungi.

Highlights

  • IntroductionOleaginous microbial biomass is considered as an alternative source of high- and low-value unsaturated lipids for food, feed, chemical industry, and lipid-based biofuels (Ratledge 2010)

  • Unsaturated lipids are essential components in a human and animal nutrition and are traditionally obtained from fish and Electronic supplementary material The online version of this article contains supplementary material, which is available to authorized users.Oleaginous microbial biomass is considered as an alternative source of high- and low-value unsaturated lipids for food, feed, chemical industry, and lipid-based biofuels (Ratledge 2010)

  • The aim of the study was to investigate the influence of nitrogen source nature and the phosphorus source availability under nitrogen-limiting conditions on the biomass growth, lipid accumulation, and fatty acid profile of triacylglycerides for nine oleaginous Mucoromycota fungi, which were selected based on previously reported high-throughput screening study (Kosa et al 2018b)

Read more

Summary

Introduction

Oleaginous microbial biomass is considered as an alternative source of high- and low-value unsaturated lipids for food, feed, chemical industry, and lipid-based biofuels (Ratledge 2010). Oleaginous microorganisms, such as filamentous fungi, yeast and microalgae, are able to accumulate lipids up to. Depending on the fungal producer, accumulated lipids can be very similar to either vegetable oils, where saturated and monounsaturated fatty acids dominate, or to fish oils, where monounsaturated and polyunsaturated fatty acids dominate. High-price polyunsaturated fatty acids (ω3PUFAs) may achieve high market value in pharmaceutical and food industry (van der Voort et al 2017)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call