Abstract

Phosphorus (P) is widely used as n-type dopant for silicon (Si) to form the emitter layer in wafer-based silicon solar cells. The main purpose of this work is to investigate the influence of P doping on the structural and mechanical properties of silicon. CASTEP program, which uses the density functional theory (DFT), with a plane-wave basis, is used to study the structural, electronic, and mechanical properties of undoped and P-doped Si (Si1−xPx for 0.0001 ≤ x ≤ 0.05). The density of states (DOS), band structure, elastic constants, bulk modulus \( \left( B \right) \), Young’s modulus (E), Shear modulus \( \left( G \right) \), and Poisson’s ratio (v) were all calculated. It is found that brittleness of Si increased by P doping.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.