Abstract

Discrete-element method (DEM) simulations of planar wave propagation are used to examine the effect of particle surface roughness on the stiffness and dynamic response of granular materials. A new contact model that considers particle surface roughness is implemented in the DEM simulations. Face-centred cubic lattice packings and random configurations are used; uniform spheres are considered in both cases to isolate fabric and contact model effects from inertia effects. For the range of values considered here surface roughness caused a significant reduction in stiffness, particularly at lower confining stresses. The simulations confirm that surface roughness effects can at least partially explain the value of the exponent in the relationship between stiffness and mean confining stress for an assembly of spherical particles. Frequency domain analyses showed that the maximum frequency transmitted through the sample is reduced when surface roughness is considered. The assumption of homogeneity of stress and contacts in analytical micromechanical models is shown to lead to an overestimation of stiffness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.