Abstract

We present first principle investigation of the influence of platinum nanoparticle shape and size on the oxygen reduction reaction activity. We compare the activities of nanoparticles with specific shapes (tetrahedron, octahedron, cube and truncated octahedron) with that of equilibrium particle shape at 0.9 V. Furthermore, the influence of support is assessed by looking at the particles with and without support interactions. The equilibrium shape is determined by calculating the changes in surface energies with potential for low-index platinum facets; (111), (100) and (110). This has been done by explicitly taking the coverage of oxygenated species into account. A kinetic model derived from counting the number of sites shows that the theoretical activity obtained for equilibrium particle fits well with experimental data. Particles with ~3 nm diameter are found to possess the highest activity. The influence of particle size and shape on the activity of platinum nanoparticles for oxygen reduction reaction has been assessed by means of modelling using the surface free energies of low-indexed platinum facets at 0.9 V. The input data for modelling are obtained from density functional theory calculations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.