Abstract

In this work, the thermal expansion coefficient (CTE) of a composite containing spherical particles surrounded by an inhomogeneous interphase embedded in an isotropic matrix is evaluated by means of a new model. The thermomechanical properties of the interphase are formulated as continuous radial functions. It is assumed that this third phase developed between the polymeric matrix and the filler particles contains both areas of absorption interaction in polymer surface layers onto filler particles as well as areas of mechanical imperfections. It can be said that the concept of boundary interphase is a useful tool to describe quantitatively the adhesion efficiency between matrix and particles and that there is an effect of this phase on the thermomechanical properties of the composite. The thickness and volume fraction of this phase were determined from heat capacity measurements for various filler contents. On the other hand, it is assumed that the particle arrangement (distribution) which can be considered as an influence of neighboring inclusions and their interaction should affect the thermomechanical constants of the composite. The theoretical predictions were compared with experimental results as well as with theoretical values from expressions obtained from other workers and they were found to be in satisfactory agreement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.