Abstract

The equi-biaxial fatigue behaviour of silicone based magnetorheological elastomers (MREs) with various volume fractions of carbonyl iron particles ranging between 15% and 35% was studied. Wöhler curves for each material were derived by cycling test samples to failure over a range of stress amplitudes. Changes in complex modulus (E∗) and dynamic stored energy during the fatigue process were observed. As for other elastic solids, fatigue resistance of MREs with different particle contents was shown to be dependent on the stress amplitudes applied. MREs with low particle content showed the highest fatigue life at high stress amplitudes while MREs with high particle content exhibited the highest fatigue resistance at low stress amplitudes. E∗ fell with the accumulation of cycles for each material, but the change was dependent on the particle content and stress amplitude applied. However, each material failed in a range suggesting a limiting value of E∗ for the material between 1.22 MPa and 1.38 MPa regardless of the particle content and the magnitude of the stress amplitude. In keeping with results from previous testing, it was shown that dynamic stored energy can be used to predict the fatigue life of MREs having a wide variation in particle content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.