Abstract
The application of lacrimal gland-derived mesenchymal stem cells (LG-MSC) for the regeneration of lacrimal gland tissue could result in a novel therapy for dry-eye syndrome. To optimize the culture conditions, the purpose of this study was to evaluate the influence of low oxygen on phenotype, differentiation potential, proliferative, and regenerative capacity of murine LG-MSC. Murine LG-MSC were cultured in 21% and 5% oxygen and characterized by flow cytometry, cell sorter assisted proliferation-, and colony forming unit-assays. Reactive oxygen species (ROS) levels as well as lineage differentiation were evaluated. The effect of conditioned medium of LG-MSC from both oxygen conditions (CM MSC 21%, respectively, CM MSC 5%) on lacrimal gland epithelial cells (LG-EC) was examined in wound healing and proliferation assays. Cells under both culture conditions revealed differentiation potential and presented a MSC-specific flow cytometric phenotype. In 5% oxygen, cells yielded less ROS, showed a stable morphology, higher colony forming potential, and an increased proliferation capacity. Five percent oxygen significantly increased the number of CD44+ LG-MSC. Furthermore, CM MSC 5% significantly enhanced migration and proliferation in LG-EC. In vitro expansion in low oxygen preserves the proliferation capacity and differentiation potential of LG-MSC and increases the effects of conditioned medium on migration and proliferation in LG-EC. Therefore, expansion in low oxygen seems to be an excellent method, to obtain vital MSC. Also, an increased number of LG-MSC expressing CD44 was observed under low oxygen, which might be a valuable marker to identify a potent MSC subpopulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.