Abstract
A series of poly(methyl methacrylate) (PMMA) nanocomposites were synthesized using free radical polymerization in bulk, by addition of 1 vol% of oxide nanoparticles (silica, alumina, and titania), differing in the nature and type. The influence of nanofiller presence on the kinetics of methyl methacrylate (MMA) free radical polymerization was investigated. For this purpose, the kinetic model that includes the contribution from the first‐order reaction and the autoacceleration was applied on data obtained following the isothermal polymerization at 70°C by differential scanning calorimetry (DSC). The effect of the size and the surface nature of nanofillers on the interfacial layer thickness (d), as well as the influence of d on the glass transition temperature (Tg) of PMMA hybrid materials was studied. It was found that hydrophilic particles accelerated the initiator decomposition and affected the monomer polymerization on the surface, which caused the formation of thicker interfacial layer compared to the one around hydrophobic fillers. The addition of smaller nanoparticles size decreased the glass transition temperature of pure poly(methyl metacrylate). The linear increase of PMMA Tg value with increasing the polymeric interfacial layer was determined. The Tg values of pure PMMA and PMMA nanocomposite with d of 1.4 nm were estimated to be the same. POLYM. COMPOS. 34:1342–1348, 2013. © 2013 Society of Plastics Engineers
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.