Abstract

Abstract The headgear structure allows the conveyance to be moved over the shaft top to the loading (unloading) point, at the same time it keeps in place the rope pulleys while tower-type headgear structures also accommodate the entire winder installations. The headgear is where the final stage of the hoisting installation is located and where the surface transport systems begin. These aspects strongly impact the actual shape of the tower, its height and in some cases determine the design of the entire winding gear. In order that all the headgear functions should be provided, it is required that the ultimate state conditions should be maintained throughout its entire service life. In order to assess the critical service conditions, the computation procedure should be applied based on design loads and fatigue endurance parameters. The computations of characteristic loads acting on the headgear structure use the developed model of the system based on the dynamic analysis carried out for a specific case: a hoisting installation operated in one of the underground collieries in Poland. The maximal and minimal loads acting on a Koepe pulley and those required for the system operation are determined accordingly. The laws of dynamics provide a background for finding the forces and moments of forces acting in the components of the driving system (including the electric motors and pulley blocks) for the specified loading of the Koepe pulley. Underlying the numerical FEM model of the tower-type headgear structure are the technical specifications of the analysed object and FEM calculations followed by endurance analysis to find the state of stress in structural elements of the headgear under the typical service conditions. The results help in assessing how the design of the hoisting installation should impact on safety features of load-bearing elements in the headgear structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.