Abstract
Our understanding on how soil organic carbon (SOC) storage, crop yield, and yield stability are influenced by climate is limited. To critically examine this, the impact of long-term (≥10 years) application of nutrient management practices on SOC storage, crop productivity, and yield stability were evaluated under different climatic conditions in China using a meta-analysis approach. The cropping area of China was divided into four distinct groups based on local climatic conditions (warm dry, DW; warm moist, WM; cool dry, CD; cool moist, CM). Results indicated that the impact of nutrient management practices on SOC storage, crop yield, and yield stability varies under different climatic zone in China. The use of unbalanced mineral fertilizer (UMF), and balanced mineral fertilizer (BMF) led to a loss in SOC storage by 6%, and 11% under CM climatic zone and gains in DW, WM, and CD climates. Organic fertilizers (OF), combined unbalanced mineral and organic fertilizers (UMOF), and combined balanced mineral and organic fertilizers (BMOF) were able to sustain and enhance SOC storage under all climatic conditions. However, the largest increase in SOC storage across all climates was seen for BMOF. Further, corresponding values of crop productivity and yield stability were also highest for BMOF among all the nutrient management treatments. A linear-plateau model indicated that maximal yield responsive SOC stock (Copt) levels ranged from 33.43 to 45.51 Mg C ha−1 for rice (Oryza sativa), maize (Zea mays), and wheat (Triticum aestivum) production. To enhance and sustain SOC storage, and crop productivity of croplands under different climates, BMOF appears to be the most appropriate nutrient management strategy. Our findings demonstrate that it is essential to optimize nutrient management strategies according to the local climate to protect soil from SOC losses, and for achieving sustainable crop production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.