Abstract
The dependence of elastic moduli for different directions on the nonstoichiometry with respect to carbon atoms in octahedral interstices of face-centered cubic crystalline lattice is established for the first time for metastable tungsten carbide (β-WC1–x phase). It is shown that with decreasing content of carbon atoms in the tungsten carbide lattice it is compressed, which is accompanied by the growth of the contribution of metallic component, thus determining higher density of the coating material and change of elastic characteristics for different crystallographic directions. This makes it possible to obtain carbide coatings with the required ratio of elastic constants via corresponding technological regimes, which is especially important in formation of coatings with predominant crystallite growth orientation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.