Abstract
Abstract The nonplanar responses of a beam clamped at one end and restrained by nonlinear springs at the other end is investigated under a primary resonance base excitation. The beam’s geometry and the springs’ linear stiffnesses are such that the system possesses a one-to-one autoparametric resonance between the nth in-plane and out-of-plane modes. The beam is modeled using Euler-Bernoulli theory and includes cubic geometric and inertia nonlinearities. The objective is to assess the influence of the nonlinear boundary conditions on the beam’s oscillations. To this end, the method of multiple scales is directly applied to the integral-partial-differential equations of motion and associated boundary conditions. The result is a set of four nonlinear ordinary-differential equations that govern the slow dynamics of the system. Solutions of these modulation equations are then used to characterize the system’s nonlinear behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.