Abstract

This manuscript is concerned with the theory of nucleation and evolution of a polydisperse ensemble of crystals in metastable liquids during the intermediate stage of a phase transformation process. A generalized growth rate of individual crystals is obtained with allowance for the effects of their non-stationary evolution in unsteady temperature (solute concentration) field and the phase transition temperature shift appearing due to the particle curvature (the Gibbs-Thomson effect) and atomic kinetics. A complete system of balance and kinetic equations determining the transient behaviour of the metastability degree and the particle-radius distribution function is analytically solved in a parametric form. The coefficient of mutual Brownian diffusion in the Fokker-Planck equation is considered in a generalized form defined by an Einstein relation. It is shown that the effects under consideration substantially change the desupercooling/desupersaturation dynamics and the transient behaviour of the particle-size distribution function. The asymptotic state of the distribution function (its 'tail'), which determines the relaxation dynamics of the concluding (Ostwald ripening) stage of a phase transformation process, is derived. This article is part of the theme issue 'Transport phenomena in complex systems (part 1)'.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call