Abstract

AbstractUsing recombinant human glycoprotein VI (GPVI), we evaluated the effect of N-linked glycosylation at the consensus site Asparagine92-Glycine-Serine94 (N92GS94) on binding of this platelet-specific receptor to its ligands, human type I collagen, collagen-related peptide (CRP), and the snake venom C-type lectin convulxin (CVX). In COS-7 cells transiently transfected with GPVI, deglycosylation with peptide-N-glycosidase F (PNGase F; specific for complex N-linked glycans) or tunicamycin decreases the molecular weight of GPVI and reduces transfected COS-7 cell binding to both CRP and CVX. In stably transfected Dami cells, the substitutions N92A or S94A, but not L95H, resulted in a 30% to 40% decrease in adhesion to CVX, but a 90% or greater decrease in adhesion to CRP and a 65% to 70% decrease in adhesion to type I collagen. Treatment with PNGase F, but not Endoglycosidase H (Endo H) (specific for high-mannose N-linked glycans), produced an equivalent decrease in molecular weight. Neither N92A nor S94A affected the expression of GPVI, based on the direct binding of murine anti–human GPVI monoclonal antibody 204-11 to transfected Dami cells. These findings indicate that N-linked glycosylation at N92 in human GPVI is not required for surface expression, but contributes to maximal adhesion to type I collagen, CRP and, to a lesser extent, CVX.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call