Abstract
The deformation behaviors of 310s stainless steel weld metals (WMs) with different Nb contents are investigated under uniaxial tension at temperatures ranging from ambient temperature to 1000 °C. The results show that Nb effectively improves the strength of the WMs in the whole test temperatures range. The addition of Nb causes a change in the fractures of the WMs from intergranular brittle fractures to intragranular ductile fractures at elevated temperature. Hence, elemental Nb enhances the elevated temperature plasticity of the WMs. However, as the eutectic Nb(C, N) promotes the nucleation and propagation of the cracks, Nb decreases the elongation of the WMs at temperature below 700 °C. With the increase in the deformation temperature, the strength of the WMs decreases monotonously. However, the elongation of the WMs shows a nonmonotonic relationship with the temperatures. The deformation twins can occur at room temperature and improve the strength and elongation of the WMs. Meanwhile, the cracks nucleate around the eutectic Nb(C, N) at 1000 °C, leading to the minimum elongation of the Nb-bearing WMs in the whole test temperature range. The differential scanning calorimetry result suggests that the melting of the eutectic Nb(C, N) may be the dominant reason for the nucleation of the cracks and result in the reduction in the elongation of the Nb-bearing WM at 1000 °C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.