Abstract

AbstractFinding a robust catalytic system for hydrogen production via dry reforming of methane (DRM) remains a challenge. Herein, MNi0.9Zr1−xYxO3 (M = Ce, La, and La0.6Ce0.4; x = 0.00, 0.05, 0.07, and 0.09) catalyst was prepared by the sol–gel method, tested for DRM and characterized by surface area and porosity, X‐ray diffraction, H2‐temperature programmed reduction, thermogravimetry, and transmission electron microscopy. In La0.6Ce0.4NiO3 catalyst, the substitution of Ni by 0.1% Zr results in a constant high catalytic activity (83% hydrogen yield at 800°C) due to the presence of reducible “NiO‐species interacted strongly with the support” (stable metallic Ni over reduced catalyst) and redox input by ceria phase for laying instant lattice oxygen during lag‐off period of CO2. Substitution of Ni by Zr and Y in the CeNiO3 catalyst system nurtures Ni3Y (providing highly stable metallic Ni for CH4 decomposition) and cerium yttrium oxide phases (providing strong redox input). CeNi0.9Zr0.01Y0.09O3 shows 85% H2 yield at 800°C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call