Abstract

The ethanol steam reforming (ESR) reaction has been tested over RhPd supported on polycrystalline ceria in comparison to structured supports composed of nanoshaped CeO2 cubes and CeO2 rods tailored toward the production of hydrogen. At 650–700K the hydrogen yield follows the trend RhPd/CeO2-cubes>RhPd/CeO2-rods>RhPd/CeO2-polycrystalline, whereas at temperatures higher than 800K the catalytic performance of all samples is similar and close to the thermodynamic equilibrium. The improved performance of RhPd/CeO2-cubes and RhPd/CeO2-rods for ESR at low temperature is mainly ascribed to higher water–gas shift activity and a strong interaction between the bimetallic–oxide support interaction. STEM analysis shows the existence of RhPd alloyed nanoparticles in all samples, with no apparent relationship between ESR performance and RhPd particle size. X-ray diffraction under operating conditions shows metal reorganization on {100} and {110} ceria crystallographic planes during catalyst activation and ESR, but not on {111} ceria crystallographic planes. The RhPd reconstructing and tuned activation over ceria nanocubes and nanorods is considered the main reason for better catalytic activity with respect to conventional catalysts based on polycrystalline ceria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call