Abstract

The role of the RAD57 gene in double-strand gap (DSG) repair has been examined. The repair of a linearized plasmid, bearing a DSG, has been analyzed in a rad57-1 mutant of Saccharomyces cerevisiae. For effective rejoining of the ends of plasmid DNA in the rad57 mutant the sequence of chromosomal DNA homologous to the DSG region is required. However, DSG repair (restoration of plasmid circularity) in rad57 cells is not accompanied by the recovery of DSGs. The DSG repair, which depends on an homologous chromosomal DNA sequence, requires the cohesive ends of DSGs. The non-cohesive-ended DSGs are repaired in rad57 cells by a pathway independent of the homologous recombination between chromosomal and plasmid DNA. We presume that the rad57-1 mutation is connected with the inhibition of DNA repair synthesis, required for filling the DSG. This situation produces a condition of "homology-dependent ligation", the alternative minor mechanism of recombinational DSG repair, that takes place in mutant cells. A molecular model for "homology-dependent ligation" in rad57 cells is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.