Abstract
Quantifying tree canopy cover in a spatially explicit fashion is important for broad-scale monitoring of ecosystems and for management of natural resources. Researchers have developed empirical models of tree canopy cover to produce geospatial products. For subpixel models, percent tree canopy cover estimates (derived from fi ne-scale imagery) serve as the response variable. The explanatory variables are developed from reflectance values and derivatives, elevation and derivatives, and other ancillary data. However, there is a lack of guidance in the literature regarding the use of leaf-on only imagery versus multi-season imagery for the explanatory variables. We compared models developed from leaf-on only Landsat imagery with models developed from multi-season imagery for a study area in Georgia. There was no statistical difference among models. We suggest that leaf-on imagery is adequate for the development of empirical models of percent tree canopy cover in the Piedmont of the Southeastern United States.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.