Abstract

BackgroundThe purpose of this study was to demonstrate how magnetic resonance imaging (MRI) patient position protocols influence registration quality in patients with oropharyngeal cancer undergoing radical radiotherapy and the consequences for gross tumour volume (GTV) definition and radiotherapy planning.Methods and materialsTwenty-two oropharyngeal patients underwent a computed tomography (CT), a diagnostic MRI (MRID) and an MRI in the radiotherapy position within an immobilization mask (MRIRT). Clinicians delineated the GTV on the CT viewing the MRID separately (GTVC); on the CT registered to MRID (GTVD) and on the CT registered to MRIRT (GTVRT). Planning target volumes (PTVs) were denoted similarly. Registration quality was assessed by measuring disparity between structures in the three set-ups. Volumetric modulated arc therapy (VMAT) radiotherapy planning was performed for PTVC, PTVD and PTVRT. To determine the dose received by the reference PTVRT, we optimized for PTVC and PTVD while calculating the dose to PTVRT. Statistical significance was determined using the two-tailed Mann–Whitney or two-tailed paired student t-tests.ResultsA significant improvement in registration accuracy was found between CT and MRIRT versus the MRID measuring distances from the centre of structures (geometric mean error of 2.2 mm versus 6.6 mm). The mean GTVC (44.1 cm3) was significantly larger than GTVD (33.7 cm3, p value = 0.027) or GTVRT (30.5 cm3, p value = 0.014). When optimizing the VMAT plans for PTVC and investigating the mean dose to PTVRT neither the dose to 99% (58.8%) nor 95% of the PTV (84.7%) were found to meet the required clinical dose constraints of 90% and 95% respectively. Similarly, when optimizing for PTVD the mean dose to PTVRT did not meet clinical dose constraints for 99% (14.9%) nor 95% of the PTV (66.2%). Only by optimizing for PTVRT were all clinical dose constraints achieved.ConclusionsWhen oropharyngeal patients MRI scans are performed in the radiotherapy position there are significant improvements in CT-MR image registration, target definition and PTV dose coverage.

Highlights

  • The purpose of this study was to demonstrate how magnetic resonance imaging (MRI) patient position protocols influence registration quality in patients with oropharyngeal cancer undergoing radical radiotherapy and the consequences for gross tumour volume (GTV) definition and radiotherapy planning

  • When oropharyngeal patients MRI scans are performed in the radiotherapy position there are significant improvements in computed tomography (CT)-MR image registration, target definition and Planning target volumes (PTVs) dose coverage

  • There was a reduction in the geometric mean distance from the centre of the orbits and odontoid process delineated on the CT and MRIRT to that delineated on the CT to MRID volumes (Figure 3) and this was significant (p value < 0.001) for each structure

Read more

Summary

Introduction

The purpose of this study was to demonstrate how magnetic resonance imaging (MRI) patient position protocols influence registration quality in patients with oropharyngeal cancer undergoing radical radiotherapy and the consequences for gross tumour volume (GTV) definition and radiotherapy planning. In radiotherapy (RT) planning, computed tomography (CT) remains the first choice since it provides accurate dosimetric information. Imaging modalities such as magnetic resonance imaging (MRI) and positron emission tomography (PET) may present advantages compared to CT in terms of target definition. MRI offers improved soft tissue contrast [2,3] and reduced artefacts from dental amalgam; MRI is the imaging modality of choice for oropharyngeal cancers [4]. MRI improves target definition for patients with head and neck [5,6,7], prostate [8,9] and brain [10,11] cancer

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call