Abstract

Arm movements in the horizontal plane consisting of two segments were examined to determine whether the difficulty of the second segment influenced the kinematic characteristics of the first segment. The direction of the first segment was an elbow extension movement away from the trunk and remained constant throughout the experiment. The direction of the second segment varied between forearm extension and flexion movements. Based on Fitts' law, two different indexes of difficulty (ID) of the second segment were utilized by changing target size and movement amplitude. The effects of changing ID were examined for two different movement amplitudes. All movements were single-joint movements employing elbow flexion/extension and were recorded by an x-y digitizer. Variations in the ID of the second segment produced context-dependent kinematic changes in the performance of the initial segment. Movement duration increased when the ID was increased by reducing target size for both extension-extension sequence and extension-flexion sequences. Peak velocity also decreased for higher ID targets in the extension-flexion sequence. However, there was an interaction between the ID and movement amplitude in the extension-flexion sequence. In this sequence the duration of movement for the high ID/large movement amplitude condition increased substantially compared with the low ID/small movement amplitude condition. In addition, changing ID of the second segment influenced the time between the two segments (intersegment interval) in the extension-flexion sequence. Collectively, these data suggest that the planning of complex movements is based in part on the accuracy demands of multiple segments of the sequence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.