Abstract

Abstract Ball bearing stiffness is significantly affected by internal clearance as well as the nature of applied loads and bearing ring mounting compliance. Since their stiffnesses are key to rotor critical speeds, it is important to obtain the most accurate possible radial stiffness prediction for shaft bearings during the machine design analysis process. Quasi-static analysis of spring-preloaded ball bearings predicted reduced radial stiffness when the outer ring is permitted to tilt rather than being assumed restrained from angular deflection. This effect was confirmed experimentally by observing resonant frequencies of a rotor supported on ball bearings of varied internal clearance, mounted with and without spring preloading. Analytic predictions of bearing stiffness are given, and test results presented for comparison.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.