Abstract
We consider a two-component system of coupled sine-Gordon equations, particular solutions of which represent a continuum generalization of periodic energy exchange in a system of coupled pendulums. Weakly nonlinear solutions describing periodic energy exchange between waves traveling in the two components are governed, depending on the length scale of the amplitude variation, either by two nonlocally coupled nonlinear Schrodinger equations, with different transport terms due to the group velocity, or by a model that is nondispersive to the leading order. Using both asymptotic analysis and numerical simulations, we show that the effects of dispersion significantly influence the structure of these solutions, causing modulational instability and the formation of localized structures but preserving the pattern of energy exchange between the components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.