Abstract

Although substantial uncertainty typically surrounds the choice of the best model in most phylogenetic analyses, little is known about how accommodating this uncertainty affects phylogenetic inference. Here we explore the influence of Bayesian model averaging on the phylogenetic inference of the triggerfishes (Family: Balistidae), a charismatic group of reef fishes. We focus on clade support as this area has received little attention and is typically one of the most important outcomes of phylogenetic studies. We present a novel phylogenetic hypothesis for the family Balistidae based on an analysis of two mitochondrial (12S, 16S) and three nuclear genes (TMO-4C4, Rhodopsin, RAG1) sampled from 26 ingroup species. Despite the presence of substantial model uncertainty in almost all partitions of our data, we found model-averaged topologies and clade posteriors to be nearly identical to those conditioned on a single model. Furthermore, statistical comparison of clade posteriors using the Wilcoxon signed-rank test revealed no significant differences. Our results suggest that although current model-selection approaches are likely to lead to overparameterization of the substitution model, the consequences of conditioning on this overparameterized model are likely to be mild. Our phylogenetic results strongly support the monophyly of the triggerfishes but suggest that the genera Balistoides and Pseudobalistes are polyphyletic. Divergence time estimation supports a Miocene origin of the crown group. Despite the presence of several young species-rich subclades, statistical analysis of temporal diversification patterns reveals no significant increase in the rate of cladogenesis across geologic time intervals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.