Abstract

The influence of model assumptions on the dynamic impedance functions of shallow foundations is investigated using finite elements in two studies. The first investigates the effects of model assumptions in different combinations including embedment of the foundation, variation of modulus with depth, and permanent load acting on the foundation. The second study is a parametric analysis investigating the effects of permanent load at varying soil depths and with different soil modulus coefficients. Shallow foundations in strata of frictional soil on top of bedrock are considered. Small-strain modulus and modulus reduction relationships are used in an iterative process to update the modulus due to the permanent load. The results show that model assumptions can have a large influence on impedance functions. The static stiffness coefficients differ, in some instances by more than 100%. The impedance functions, normalized with the static stiffness coefficients match each other well in the pre-resonance frequency range. However, in the frequency range above the fundamental frequency, the normalized impedance functions show a large variation. Further, the results show that the influence of the permanent load is largest in the case of shallow and stiff soil strata, both regarding normalized impedance functions as well as the static stiffness coefficient, which can be increased up to 67%. The change in fundamental frequency was however minimal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call