Abstract

In high‐power, high‐speed traction drive systems, the traction motor usually operates under one‐pulse PWM (pulse width modulation) mode (square wave) during high‐speed operation. The constant output voltage in this condition makes the traditional vector control inoperative anymore. In this paper, a modified vector control strategy using open‐loop current control instead of closed‐loop current control is proposed. The modified control strategy is specially designed for an induction motor operating under one‐pulse PWM mode. As the field orientation is greatly affected by the deviation in the parameters, the influence of mistuned rotor time constant and mutual inductance (which are regarded as the most important parameters for field orientation) on the performance of modified vector control is studied comprehensively, including the influence on estimated angle and amplitude of rotor flux, d/q‐axis voltage, and output torque. Subsequently, based on the comparison between the different methods, a new slip frequency correction strategy is proposed to maintain proper field orientation for the modified vector control. The new correction strategy is based on the q‐axis current component error. It is independent of the motor parameters and can be easily realized through minor calculations. The simulation and experimental results show that the proposed slip frequency correction strategy can not only eliminate rotor flux angle error in steady state but also effect rapid torque response during the transient process under one‐pulse PWM mode. © 2014 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.