Abstract

Summary Endogeic earthworms play an important role in mobilisation and stabilisation of carbon and nitrogen in forest and arable soils. Soil organic matter is the major food resource for endogeic earthworms, but little is known about the size and origin of the organic matter pool on which the earthworms actually live. We measured changes in body mass of juvenile endogeic earthworms, Octolasion tyrtaeum (Savigny), in soils with different C and N contents resulting from different fertiliser treatments. The soil was taken from a long-term experiment (Statischer Dungungsversuch, Bad Lauchstadt, Germany). The treatments included (1) non-fertilised soil, (2) NPK fertilised soil, (3) farmyard manure fertilised soil and (4) NPK + farmyard manure fertilised soil. The soil was incubated in microcosms with and without one juvenile O. tyrtaeum for 80 days. Earthworm biomass decreased in non-fertilised soil by 48.6%, in NPK soil by 9.4%, but increased in farmyard manure soil by 19.7% and 42.8% (soil with additional NPK application). In farmyard manure treatments the biomass of bigger individuals decreased, but in smaller individuals it increased. In NPK fertilised soil without farmyard manure only small O. tyrtaeum increased in body mass, whereas in the non-fertilised soil all individuals decreased in body mass. Generally, soil respiration correlated positively with soil carbon content. Earthworms significantly increased soil respiration and nitrogen leaching and this was most pronounced in farmyard manure treatments. Microbial activity was generally higher in farmyard manure soil indicating that farmyard manure increases labile organic matter pools in soil. Also, biomass of earthworms and microorganisms was increased in farmyard manure soil. The presence of earthworms reduced microbial biomass, suggesting that earthworms feed on microorganisms or/and that earthworms and soil microorganisms competed for similar organic matter pools in soil. The results demonstrate that NPK fertilisation only is insufficient to sustain O. tyrtaeum , whereas long-term fertilisation with farmyard manure enables survival of endogeic species due to an increased pool of utilisable soil organic matter in arable soil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call