Abstract

When water comes in contact with a hydrophobic fluoropolymer, a triboelectric charge tends to form on the surface. Here, it is investigated how the triboelectric charge formed upon contact with water drops depends on the microscale surface statistics of the polymer. In particular, it is found that the transition to a superhydrophobic fakir state results in a considerable reduction in triboelectric contact charge, due to a reduced liquid?solid contact area. Thus, when processing charge-sensitive electronic systems one may want to utilize such surfaces promoting reduced tribocharging. This also has implications for energy harvesting purposes, where one may collect electrical energy by letting water droplets move on the polymer with an interdigitated current-collecting electrode on its back side. In such a situation, it is observed that the surfaces promoting the superhydrophobic fakir state give rise to larger water droplet velocities and smaller collected charge, which explains the need for careful assessment of surface treatment before applying microstructured polymers for water droplet energy harvesting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.