Abstract

Rapid urbanization has drawn some aquatic environments into the urban texture from the outskirts of cities, and the composition and distribution of plant species in urban wetlands along the urban gradient have changed. Understanding the drivers of these changes will help in the conservation and utilization of urban wetlands. This study investigated the differences in plant diversity and associated influencing factors in three wetlands, Xixi wetland, Tongjian Lake wetland, and Qingshan Lake wetland, which are located in a core area, fringe area, and suburban area of Hangzhou City, respectively. The results showed that a total of 104 families, 254 genera, and 336 species of plants were recorded in the Xixi wetland; 179 species, 150 genera, and 74 families were found in the Qingshan Lake wetland; and 112 species, 96 genera, and 57 families were collected in the Tongjian Lake wetland. The main plant species and flora distribution of the three urban wetlands showed similarities. Indigenous spontaneous vegetation was highest in the Xixi wetland, while cultivated plant species were most abundant in the Tongjian Lake wetland. The introduction of cultivated plants decreased the distance attenuation effect of plant communities, which led to a certain degree of plant diversity convergence among the three wetlands. Eight endangered plants were preserved in the Xixi wetland by planting them in suitable habitats. Ellenberg's indicator values showed that the proportion of heliophilous plants was higher in the Qingshan Lake wetland, while the proportion of thermophilous plants and nitrogen-loving plants in the Tongjian Lake wetland was higher than in the other two wetlands. The importance of artificial interference factors affecting the differences in plant diversity was significantly higher than that of natural environmental factors in urban wetlands. The preservation of spontaneous plants and the introduction of cultivated plants had an importance of 25.73% and 25.38%, respectively. These were the main factors influencing the plant diversity of urban wetlands. The management mode that did not interfere with spontaneous vegetation and confined maintenance to cultivated plants in the Xixi wetland was beneficial for improving wetland plant diversity. Scientific plant reintroduction can also improve wetland plant diversity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.