Abstract

The influence of low energy availability (LEA) on bone mineral density (BMD) and trabecular bone microarchitecture in pubescent female athletes is unclear. This study aimed to investigate the influence of LEA on BMD and trabecular bone microarchitecture in 21 pubescent female athletes (age, 12–15 years; 11 track and field athletes, 10 gymnasts). We used two indices to assess LEA: energy availability and the percent of ideal body weight. Dual-energy X-ray absorptiometry was used to obtain total body less head, lumbar spine BMD Z-scores, and lumbar trabecular bone scores (TBS). Pearson’s or Spearman’s correlation coefficients were used to assess the relationship among EA, percent of ideal body weight, and bone parameters. The threshold for statistical significance was set at p < 0.05. The percent of ideal body weight was significantly correlated with the BMD Z-scores of the total body less head (r = 0.61; p < 0.01), lumbar spine (r = 0.55; p < 0.01), and lumbar TBS (r = 0.47; p = 0.03). However, energy availability was not correlated with bone parameters. These findings suggest that screening for low ideal body weight may be a useful predictor of low BMD and insufficient trabecular bone microarchitecture in pubescent female athletes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call