Abstract

AbstractWe investigated the influence of local extinctions in a subdivided population on the probability of fixation of an initially rare allele, for different migration rates. The selective regimes considered were strict underdominance, meiotic drive, and underdominance associated with meiotic drive.We show that local extinctions can increase the probability of fixation of initially rare alleles in underdominant loci for relatively high migration rates, even when both homozygotes have the same fitness. This increase is due to drift during founder events. On the contrary, local extinctions decrease the probability of fixation of alleles favoured by meiotic drive. For a locus where both meiotic drive and underdominance act, the effect of local extinctions depends on the relative strength of the two selective regimes and the initial frequency of the rare allele. For parameter values such that the rare allele is initially selected against, local extinctions decrease the probability of fixation for low migration rates while they cause an increase for moderate migration rates. When the parameter values are such that the rare allele should always be favoured by selection, local extinctions always decrease the probability of fixation. In this latter case, we show the existence of an optimal migration rate which maximizes the probability of fixation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.