Abstract

This work reports the influence of liquid silicone rubber (LSR) as a secondary matrix in the polyurethane elastomer (PUE)/LSR/graphene nanoplatelets (GnPs) stretchable conductive materials. PUE was prepared by mixing with diphenylmethane-4,4-diisocyanate (MDI) and 1,4 butanediol (BDO). The content of LSR varied from 0 to 50 vol.% at fixed 1.0 vol.% of graphene nanoplatelets (GnPs) as a conductive filler. Liquid silicone rubber was used as the secondary immiscible phase to localize GnPs into a path in the primary phase in order to obtain higher electrical conductivity value. The tensile strength of the PUE/LSR/GnPs decreased with increasing LSR content, while the tear strength shows the optimum value at 10 vol.% of LSR. The incorporation of 20 vol.% of silicone rubber has proven to enhance the thermal stability of the blends.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.