Abstract

Kelp detritus fuels coastal food webs and may play an important role as a source of organic matter for natural carbon sequestration. Here, we conducted ex situ and in situ manipulations to evaluate the role of temperature and light availability in the breakdown of detrital material. We examined degradation rates of two North Atlantic species with contrasting thermal affinities: the ‘warm water’ kelp Laminaria ochroleuca and the ‘cool water’ Laminaria hyperborea. Detrital fragments were exposed to different temperatures in controlled conditions and across an in situ gradient of depth, corresponding to light availability. Overall, degradation rates (i.e. changes in Fv/Fm and biomass) were faster under lower light conditions and at higher temperatures, although responses were highly variable between plants and fragments. Crucially, as L. ochroleuca degraded faster than L. hyperborea under some conditions, a climate-driven substitution of the ‘cool’ for the ‘warm’ kelp, which has been observed at some locations, will likely increase detritus turnover rates and alter detrital pathways in certain environments. More importantly, ocean warming combined with decreased coastal water quality will likely accelerate kelp detritus decomposition, with potential implications for coastal food webs and carbon cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.