Abstract
The benthic filamentous green algal (FGA) community of Saginaw Bay, Lake Huron, has not been extensively examined, despite its apparent link to shoreline fouling. The objective of this study was to elucidate factors, including light, nutrients, and substrate, expected to affect growth of FGA. We examined the FGA community in the southwest region of the bay, which started ~5km northwest from the Saginaw River, a known source of nutrients and sediment. Cellular nutrient quotas and photosynthetic parameters were measured in FGA over a range of water column depths and distances from the Saginaw River and then compared to published thresholds of limitation. Our results suggest that light limitation sets the maximum depth of growth and prevents growth near the Saginaw River. Our data also indicate that a light gradient extends from the Saginaw River into our study area, but we did not observe direct evidence for the existence of a parallel nutrient gradient. Most of the FGA community experienced both light and P stress, with the exception of 20% of the sampled FGA, which experienced saturating levels of midday light. Nitrogen deficiency was never observed. Our results suggest that post-dreissenid invasion increases in water clarity extended the maximum depth limit for FGA from ~3.3 to ~5m, greatly increasing the area of FGA growth. One quarter of sampled FGA were strictly P-limited and 87–100% of sampled FGA were P-deficient, suggesting that phosphorus-based management approaches could successfully reduce FGA growth in inner Saginaw Bay.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.