Abstract

The impact of water content and isoprenoids on leaf flammability was studied. Field and laboratory experiments were carried out on monoterpene-emitting evergreen broad-leaved species (Quercus ilex, Quercus suber); a needle-leaved species (Pinus halepensis) that emits and stores monoterpenes; an evergreen species (Myrtus communis) that emits isoprene but stores monoterpenes; and a deciduous species (Quercus pubescens) that emits isoprene. Photosynthesis, leaf water content (LWC) and isoprenoid emission were measured. Isoprenoid content was calculated. Temperatures of visible smoke, incandescence and flame appearance were recorded. The LWC significantly correlated with both photosynthesis and isoprenoid emissions. Linear correlation and factorial analysis revealed a positive correlation between temperature of flame appearance and LWC and a negative relationship between temperature of flame appearance and isoprenoid emission. Multiple regression analysis indicated that the temperature of flame appearance was reduced in broadleaved monoterpene-emitting species. In monoterpene emitters, the temperature of flame appearance depended for ~65% on LWC, whereas monoterpene emissions explained ~35% of the dependency. P. halepensis and M. communis, storing high levels of isoprenoids, ignited at high humidity. The results may be explained if isoprenoids indeed facilitate leaf ignition but, being dissolved in water, isoprenoids are also an indicator of a high water content that decreases flammability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call