Abstract

An experimantal study of the Al-Cu and Al-Sn systems has been performed in order to determine the fraction of solid formed after quenching in a DTA-furnace. The fraction of solid formed after quenching has been calculated using the presently accepted theory for the solidification process and is compared with the experimental results. It is concluded that the latent heat is not constant and the value found in literature is only true for very slow solidification rates. This deviation is assumed to be due to lattice defects formed during the solidification process. The defects formed are assumed to be mono-vacancies. The quantity of mono-vacancies required to give the fraction of solid found experimentally is calculated. It is shown that the free energy of the solid increased due to the increase of the vacancy concentration during solidification. The change in the free energy decreases the melting point and increases the partition coefficient between solid and liquid. The homogenisation time required to anneal the supersaturated vacancies formed, and the critical cooling rate to form this amount are calculated. It is concluded that the presently accepted solidification law for prediction of the fraction formed solid must be modified by introducing the formation of lattice defects during the solidification process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.