Abstract

The pollution load of urban runoff is boosted due to the washing away of road-deposited sediment (RDS). Therefore, a source-oriented mitigation strategy is essential to integrated stormwater management. This study showcases the influence of land use dependent source apportionment and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in RDS. Samples were collected from areas of different land uses, including commercial city centre, highway, residential rural and campus areas. According to the positive matrix factorisation (PMF) receptor model, different primary sources were identified at different land use areas. Generally, potential sources of gasoline- and diesel-powered engine emissions and other pyrogenic sources of biomass, coal, and wood combustions were identified as main sources of PAH content in RDS. The source specific risks posed by PAHs at different land uses were further estimated by the incremental lifetime cancer risk (ILCR). This shows that the mean ILCRs of the total cancer risk for children and adults at the given land uses were lower than the baseline value of an acceptable risk. However, the potential exposure risk to RDS adsorbed PAHs for children was considerably higher than that for adults. Vehicular emissions and wood combustion were the major contributors to the cancer risk with average contributions of 57 and 29%, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.