Abstract

Bacteria–metal interactions in aqueous solutions are important in biofilm formation, biofouling and biocorrosion problems in the natural environment and engineered systems. In this study, the adhesion forces of two anaerobes ( Desulfovibrio desulfuricans and Desulfovibrio singaporenus) and an aerobe ( Pseudomonas sp.) to stainless steel 316 in various aqueous systems were quantified using atomic force microscopy (AFM) with a cell probe. Results show that the nutrient and ionic strength of the solutions influence the bacteria–metal interactions. The bacteria–metal adhesion force was reduced in the presence of the nutrients in the solution, because a trace organic film was formed and thus decreased the metal surface wettability. Stronger ionic strength in the solution results in a larger bacteria–metal adhesion force, which is due to the stronger electrostatic attraction force between the positively charged metal surface and negatively charged bacterial surface. Solution pH also influences the interaction between the bacterial cells and the metal surface; the bacteria–metal adhesion force reached its highest value when the pH of the solution was near the isoelectric point of the bacteria, i.e. at the zero point charge. The adhesion forces at pH 9 were higher than at pH 7 due to the increase in the attraction between Fe ions and negative carboxylate groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.