Abstract

Resiniferatoxin (RTX) is used as an experimental drug in therapy of neurogenic urinary bladder disorders. The present study investigated the chemical coding of sympathetic chain ganglia (SChG) neurons supplying porcine urinary bladder after intravesical RTX instillation. The SChG neurons were visualized with retrograde tracing method and their chemical profile was disclosed with double-labeling immunohistochemistry using antibodies against dopamine β-hydroxylase (DβH; marker of noradrenergic neurons), neuropeptide Y (NPY), vasoactive intestinal polypeptide (VIP), somatostatin (SOM), galanin, Leu(5)-enkephalin and neuronal nitric oxide synthase (nNOS). It was found that in both the control (n = 5) and RTX-treated pigs (n = 5), the vast majority (90.4 ± 2.8 and 89.7 ± 2.3%, respectively) of FB-positive (FB+) nerve cells were DβH+. RTX instillation caused a decrease in the number of FB+/DβH+ neurons immunopositive to NPY (71.1 ± 12.1 vs 43.2 ± 6.7%), VIP (21.3 ± 10.7 vs 5.3 ± 4.3%) or SOM (16.5 ± 4.6 vs 2.3 ± 2.6%) and a distinct increase in the number of FB+/DβH+ neurons immunoreactive to nNOS (0.8 ± 1 vs 5.3 ± 1.9 %). The present study for the first time has provided some information that therapeutic effects of RTX on the mammalian urinary bladder can be partly mediated by SChG neurons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.