Abstract

In an attempt to determine the potential factors controlling the biosynthesis of the secondary metabolite capsaicin by immobilized cell cultures of the chilli pepper, Capsicum frutescens Mill, labelling techniques using the radioactive precursor [(14)C]phenylalanine have been employed. Following preincubation treatments with either capsaicin (the end-product of the pathway) or sinapic acid, [(14)C]phenylalanine was applied and the movement of the label through the pathway and its eventual fate was followed. Results have shown that capsaicin, through a feedback-inhibition mechanism, negatively influences its own synthesis. Furthermore, capsaicin synthesis in these cells is not controlled via the activity of the enzymes phenylalanine ammonia-lyase and cinnamate 4-hydroxylase which may determine the rate of entry of metabolites into the phenylpropanoid pathway. The importance of other sinks for phenylalanine derivatives, which may compete for capsaicin precursors, has also been investigated. Surprisingly, protein proved to be only a relatively minor sink for phenylalanine with the great majority of the label rapidly ending up in covalently bound phenolics in the cell wall. Attempts to prevent this by applying sinapic acid were only partially successful. The importance of these results in relation to the possible control mechanisms which operate to control secondary metabolite synthesis in vitro is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call