Abstract

Abstract The oxide-zeolite process provides a promising way for one-step production of aromatics from syngas, whereas the reasons for the dramatic effect of intimacy between oxide and zeolite in the composite catalyst on the product selectivity are still unclear. In order to explore the optimal intimacy and the essential influence factors, ZnCrOx combined with ZSM-5 are employed to prepare the composite catalysts with different distances between the two components by changing the mixing methods. An aromatic selectivity of 74% (with CO conversion to be 16%) is achieved by the composite catalyst when the intimacy is in the range of nanometer. A so-called ‘iterative reactions’ mechanism of intermediates over oxides is then proposed and studied: the intermediate chemical can undergo a hydrogenation reaction on oxide. So the shorter the intermediates stay on oxide, the more of chance for C − C coupling takes place on zeolite to form aromatics. Moreover, the aero-environments of reaction is found to impact on the extent of iterative reaction as well. Therefore, when the intimacy between the two components changes, the extent of iterative reactions vary, resulting in alteration of product distribution. This work provides new insight in understanding the mechanisms during the complex process of OX-ZEO composite catalysis and sheds light to the design of a high-yield catalyst for synthetization of aromatics from syngas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call